Lijit Search

Impulse Steam Trap

Deprecated: Function ereg() is deprecated in /home1/kbrata/public_html/opnticl/wp-content/plugins/whydowork-adsense/whydowork_adsense.php on line 332

Deprecated: Function ereg() is deprecated in /home1/kbrata/public_html/opnticl/wp-content/plugins/whydowork-adsense/whydowork_adsense.php on line 340

Deprecated: Function ereg() is deprecated in /home1/kbrata/public_html/opnticl/wp-content/plugins/whydowork-adsense/whydowork_adsense.php on line 306

Impulse steam traps, illustrated in Figure 19, pass steam and condensate through a strainer before entering the trap. A circular baffle keeps the entering steam and condensate from impinging on the cylinder or on the disk. The impulse type of steam trap is dependent on the principle that hot water under pressure tends to flash into steam when the pressure is reduced.

 Impulse  Steam  Trap

The only moving part in the steam trap is the disk. A flange near the top of the disk acts as a piston. As demonstrated in Figure 19, the working surface above the flange is larger than the working surface below the flange.

A control orifice runs through the disk from top to bottom, which is considerably smaller at the top than at the bottom. The bottom part of the disk extends through and beyond the orifice in the seat. The upper part of the disk (including the flange) is inside a cylinder. The cylinder tapers inward, so the amount of clearance between the flange and the cylinder varies according to the position of the valve. When the valve is open, the clearance is greater than when the valve is closed.

When the trap is first placed in service, pressure from the inlet (chamber A) acts against the underside of the flange and lifts the disk off the valve seat.  Condensate is thus allowed to pass out through the orifice in the seat; and, at the same time, a small amount of condensate (called control flow) flows up past the flange and into chamber B. The control flow discharges through the control orifice, into the outlet side of the trap, and the pressure in chamber B remains lower than the pressure in chamber A.

As the line warms up, the temperature of the condensate flowing through the trap increases. The reverse taper of the cylinder varies the amount of flow around the flange until a balanced position is reached in which the total force exerted above the flange is equal to the total force exerted below the flange. It is important to note that there is still a pressure difference between chamber A and chamber B. The force is equalized because the effective area above the flange is larger than the effective area below the flange. The difference in working area is such that the valve maintains at an open, balanced, position when the pressure in chamber B is approximately 86% of the pressure in chamber A.

As the temperature of the condensate approaches its boiling point, some of the control flow going to chamber B flashes into steam as it enters the low pressure area. Because the steam has a much greater volume than the water from which it is generated, pressure builds up in the space above the flange (chamber B). When the pressure in this space is 86% of the inlet pressure (chamber A), the force exerted on the top of the flange pushes the entire disk downward and closes the valve. With the valve closed, the only flow through the trap is past the flange and through the control orifice. When the temperature of the condensate entering the trap drops slightly, condensate enters chamber B without flashing into steam. Pressure in chamber B is thus reduced to the point where the valve opens and allows condensate to flow through the orifice in the valve seat. The cycle is repeated continuously.

With a normal condensate load, the valve opens and closes at frequent intervals, discharging a small amount of condensate at each opening. With a heavy condensate load, the valve remains open and allows a continuous discharge of condensate.

Orifice-Type  Steam  Trap

DOE facilities may use continuous-flow steam traps of the orifice type in some constant service steam systems, oil-heating steam systems, ventilation preheaters, and other systems or services in which condensate forms at a fairly constant rate. Orifice-type steam traps are not suitable for services in which the condensate formation is not continuous.

Although there are several variations of the orifice-type steam trap, each has one thing in common; it contains no moving parts. One or more restricted passageways or orifices allow condensate to trickle through, but do not allow steam to flow through. Some orifice-type steam traps have baffles in addition to orifices.

Free Engineering Magazines for Qualified Professionals
Pumps and Systems dl Impulse  Steam  Trap
Machinery Lubrication dl Impulse  Steam  Trap
Machine Design dl Impulse  Steam  Trap
Gear Solutions
dl Impulse  Steam  Trap
Power Transmission Engineering
dl Impulse  Steam  Trap
World Pumps dl Impulse  Steam  Trap
Maintenance Technology dl Impulse  Steam  Trap
More .. more download Impulse  Steam  Trap

This entry was posted in Mechanical Science and tagged . Bookmark the permalink.

Comments are closed.